Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sens Actuators B Chem ; 371: 132579, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2069692

ABSTRACT

Accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of great importance to control the COVID-19 pandemic. The gold standard assays for COVID-19 diagnostics are mainly based on separately detecting open reading frame 1ab (ORF1ab) and nucleoprotein (N) genes by RT-PCR. However, the current approaches often obtain false positive-misdiagnose caused by cross-contamination or undesired amplification. To address this issue, herein, we proposed a dumbbell-type triplex molecular switch (DTMS)-based, logic-gated strategy for high-fidelity SARS-CoV-2 RNA detection. The DTMS consists of a triple-helical stem region and two-loop regions for recognizing the ORF1ab and N genes of SARS-CoV-2. Only when the ORF1ab and N gene are concurrent, DTMS experiences a structural rearrangement, thus, bringing the two pyrenes into spacer proximity and leading to a new signal readout. This strategy allows detecting SARS-CoV-2 RNA with a detection limit of 1.3 nM, independent of nucleic acid amplification, holding great potential as an indicator probe for screening of COVID-19 and other population-wide epidemics.

2.
Crit Care ; 26(1): 171, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1951302

ABSTRACT

BACKGROUND: SARS-CoV-2 infection leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Both clinical data and animal experiments suggest that the renin-angiotensin system (RAS) is involved in the pathogenesis of SARS-CoV-2-induced ALI. Angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS-CoV-2 and a crucial negative regulator of RAS. Recombinant ACE2 protein (rACE2) has been demonstrated to play protective role against SARS-CoV and avian influenza-induced ALI, and more relevant, rACE2 inhibits SARS-CoV-2 proliferation in vitro. However, whether rACE2 protects against SARS-CoV-2-induced ALI in animal models and the underlying mechanisms have yet to be elucidated. METHODS AND RESULTS: Here, we demonstrated that the SARS-CoV-2 spike receptor-binding domain (RBD) protein aggravated lipopolysaccharide (LPS)-induced ALI in mice. SARS-CoV-2 spike RBD protein directly binds and downregulated ACE2, leading to an elevation in angiotensin (Ang) II. AngII further increased the NOX1/2 through AT1R, subsequently causing oxidative stress and uncontrolled inflammation and eventually resulting in ALI/ARDS. Importantly, rACE2 remarkably reversed SARS-CoV-2 spike RBD protein-induced ALI by directly binding SARS-CoV-2 spike RBD protein, cleaving AngI or cleaving AngII. CONCLUSION: This study is the first to prove that rACE2 plays a protective role against SARS-CoV-2 spike RBD protein-aggravated LPS-induced ALI in an animal model and illustrate the mechanism by which the ACE2-AngII-AT1R-NOX1/2 axis might contribute to SARS-CoV-2-induced ALI.


Subject(s)
Acute Lung Injury , Angiotensin-Converting Enzyme 2 , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/prevention & control , Acute Lung Injury/virology , Angiotensin II , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/complications , Humans , Lipopolysaccharides , Mice , Recombinant Proteins/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
J Nanobiotechnology ; 20(1): 263, 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-1881261

ABSTRACT

BACKGROUND: A balanced endogenous level of bioavailable nitric oxide (NO) plays a key role in maintaining cardiovascular homeostasis. The bioactive NO level in the cardiomyocytes was much reduced during sepsis. However, it is clinically challenging for the NO gas therapy due to the lack of spatial and temporal release system with precise control. The purpose of this study is to design a NO-releasing biomaterial with heart-targeted capability responsive to the infectious microenvironment, thus ameliorating lipopolysaccharide (LPS)-induced cardiac dysfunction. RESULTS: The heart-targeted NO delivery and in situ releasing system, PCM-MSN@LA, was synthesized using hollow mesoporous silica nanoparticles (MSN) as the carrier, and L-arginine (LA) as the NO donor. The myocardial delivery was successfully directed to heart by specific peptide (PCM) combined with low-intensity focused ultrasound (LIFU) guidance. The myocardial system synthesized NO from the LA released from PCM-MSN@LA in the presence of increased endogenous nitric oxide synthase (NOS) activity induced by LPS. This targeted NO release in situ achieved extraordinary protective effects against LPS-challenged myocardial injury by reducing the recruitment of inflammatory cells, inhibiting oxidative stress and maintaining the mitochondria integrity. In particular, this protection was not compromised by simultaneous circulation collapse as an adverse event in the context. CONCLUSIONS: PCM-MSN@LA + LIFU exhibited extraordinary cardioprotective effects against severe sepsis in the hearts of LPS-treated animals without the side effect of NO diffusion. This technology has great potential to be served as a novel therapeutic strategy for sepsis-induced myocardial injury.


Subject(s)
Nitric Oxide , Sepsis , Animals , Lipopolysaccharides , Myocardium , Myocytes, Cardiac , Sepsis/drug therapy
4.
Front Cell Infect Microbiol ; 11: 706970, 2021.
Article in English | MEDLINE | ID: covidwho-1581382

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause gastrointestinal symptoms in the patients, but the role of gut microbiota in SARS-CoV-2 infection remains unclear. Thus, in this study, we aim to investigate whether SARS-CoV-2 infection affects the composition and function of gut microbiota. In this study, we demonstrated for the first time that significant shifts in microbiome composition and function were appeared in both SARS-CoV-2-infected asymptomatic and symptomatic cases. The relative abundance of Candidatus_Saccharibacteria was significantly increased, whereas the levels of Fibrobacteres was remarkably reduced in SARS-CoV-2-infected cases. There was one bacterial species, Spirochaetes displayed the difference between patients and asymptomatic cases. On the genus level, Tyzzerella was the key species that remarkably increased in both symptomatic and asymptomatic cases. Analyses of genome annotations further revealed SARS-CoV-2 infection resulted in the significant 'functional dysbiosis' of gut microbiota, including metabolic pathway, regulatory pathway and biosynthesis of secondary metabolites etc. We also identified potential metagenomic markers to discriminate SARS-CoV-2-infected symptomatic and asymptomatic cases from healthy controls. These findings together suggest gut microbiota is of possible etiological and diagnostic importance for SARS-CoV-2 infection.


Subject(s)
COVID-19 , Dysbiosis , Humans , Metagenome , Metagenomics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL